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Abstract
The main result of this paper is a new analytical method for the design of a wide class of controllers with two
tunable and any number of fixed parameters based on 𝐻∞ specifications for SISO dead-time systems. The
essence of the method lies in the analytical description of the boundary of the 𝐻∞ region in the parametric plane
of the controller. In addition to the analytical method, the paper refers to a user-friendly web-based design tool
available at www.pidlab.com, where this extended methodology is implemented for multiple process models and
design requirements in the form of 𝐻∞ performance and robustness constraints. Two examples illustrate the
practical applicability of the proposed approach.
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1. Introduction
Dead time is a dominant aspect of many industrial systems. It
can arise from various sources: system dynamics, feedback

control, actuators, control interfaces, etc. This delay, inherent
in chemical and biological processes, transportation systems,
and communication networks, poses significant challenges to
control systems due to its complex influence on stability and
performance.

The characteristic function associated with the closed-loop
system (see Fig. 1) can exhibit three types of systems: retarded,
neutral, and advanced. In this paper, our focus is narrow to
systems of the retarded type, particularly with a single fixed
dead time. The infinite dimensionality of the delay element
𝑒−ℎ𝑠 is a primary source of the numerous technical challenges
associated with dead-time systems.

One of the simple ways to solve problems with the infinite-
dimensional delay element 𝑒−ℎ𝑠 is its approximation by finite-
dimensional component, which enables the usage of standard
analysis techniques and design methods. Widely adopted tech-
niques like Pade approximation are mostly effective, particu-
larly in the low-frequency range for fixed dead time cases.

When considering different approaches for the design of
controllers, it is essential to mention the usage of the ∞norm to specify design requirements. The design of opti-
mal ∞ controllers for LTI systems is traditionally based on
the Riccati equation or linear matrix inequality (LMI) ([10]).
This results in generating controllers with complex high-order
dynamics compared to the plant. Moreover, these solutions
are pretty fragile ([18]). The traditional ∞ synthesis lacks
mechanisms to impose a structure of controllers. Structure
∞ synthesis is an alternative to this approach. But the de-
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sign of arbitrary fixed-structure controllers leads to a complex,
nonconvex, and nonsmooth optimisation NP-hard problem,
potentially involving discontinuities within the solution space
([1]). If we additionally consider that the system includes dead
time, the problem further deepens.

Different publications use various optimisation-based tech-
niques for such design problems. In [16], a method based
on the generalised Hermite-Biehler theorem is presented. It
determines all stabilising PID controllers that ensure the in-
ternal stability of the closed-loop system. Subsequently, a
linear programming-based algorithm is utilised to determine
admissible 𝐻∞ PID controllers that meet the specified criteria.
However, it can be said that, in general, optimisation-based
techniques for dead-time systems aim to identify controllers
that stabilise the system while minimising the 𝐻∞ norm of the
associated transfer function. The priority is then to determine
the stabilising controller first. Further optimisation can be un-
dertaken while meeting the stability condition. The different
iconic approaches interested in the stabilisation problem for
dead-time systems are discussed in [17, 19, 24].

If we look at the infinite-dimensional 𝐻∞ optimisation
problem, in [15], the fixed-order 𝐻∞ controllers are designed
for a specific class of time-delay systems. A nonsmooth, non-
convex optimisation approach is employed, and a method for
computing the 𝐻∞ norm ([14]). The optimisation process
contains two main steps: stabilisation to minimise spectral
abscissa and 𝐻∞ optimisation using a hybrid optimisation
method ([13]). An alternative path was taken in ([2]), wherein
a nonsmooth trust-region bundle method is utilised to compute
locally optimal 𝐻∞ controllers for a frequency-sampled ap-
proximation of the underlying infinite-dimensional 𝐻∞ prob-
lem. Optimisation then relies on the nonsmooth trust-region
method ([3, 4]), with system transfer functions discretised
across a fine grid of frequencies.

Such methods typically produce only one locally optimal
solution, but it’s necessary to say that not every time is required
to minimise the ∞ norm magnitude. Providing all solutions
that satisfy given constraints is also a crucial feature from a
practical point of view. If the interest is shifted to the case
where the desired controller has only two or three adjustable
parameters, the parametric space approach can be employed.
The solution to the design problem can then be represented by
a region in the parametric plane of the controller. Points of
this region represent all controllers that meet specified design
requirements. In [12], the foundations for such an approach
were outlined through the D-decomposition paradigm defining
the admissible solutions region.

This paper describes the analytical design method of the
𝐻∞ affine controllers using 𝐻∞ specifications in the presence
of a system with dead time. Such a controller structure en-
ables the characterisation of a wide class of controllers with
two tunable and any number of fixed parameters. Building on
previous work ([8, 22]), our approach provides an analytical,
computational procedure for translating diverse 𝐻∞ design
specifications to the boundary of the 𝐻∞ region in the para-

metric plane of the controller. Through the intersection of 𝐻∞regions, it is possible to implement both single and multiple
system model designs and, at the same time, demand fulfil-
ment of several 𝐻∞ limitations. In contrast to the previously
published technique in [8] that was dependent on Pade ap-
proximation for dead-time systems, we introduce an upgraded
analytical, computational procedure that doesn’t rely on such
simplification. Due to the frequency domain-based design
approach, the method met no significant hurdles. However, a
problem arose during a step involving standard stability analy-
sis techniques due to the infinite dimensionality of the delay
element 𝑒−ℎ𝑠. This fact led to the revision of the original de-
sign procedure ([8]) and the proper selection of a method for
stability analysis of systems with dead time.

The remainder of this paper is organised as follows: Sec-
tion 2 presents the basic assumptions and a brief theoretical
basis of the research problem. Section 3 is dedicated to for-
mulating the analytical design method for dead-time systems.
Section 4 contains the overview of the PID 𝐻∞ Designer
and two exemplary examples. The paper’s conclusion is in
Section 5.

2. Preliminaries and Problem Statements
2.1 Control Loop
Consider a closed-loop control system shown in Fig. 1, where

𝑃 (𝑠) = 𝑃𝑟(𝑠)𝑒−ℎ𝑠 (1)

C(s,k) P(s)
r e u

d

y

n

Figure 1. A standard feedback system

is a transfer function describing an LTI SISO plant, 𝑃𝑟(𝑠)is a strictly proper rational transfer function, and ℎ > 0. The
fixed structure controller 𝐶(𝑠,k) is assumed in the form of an
affine function

𝐶(𝑠,k) ≜ 𝑘𝑞𝑄(𝑠) + 𝑘𝑟𝑅(𝑠) + 𝐹 (𝑠), (2)
where 𝑄(𝑠), 𝑅(𝑠), and 𝐹 (𝑠) are arbitrary proper rational trans-
fer functions. The controller’s transfer function (2) is affinely
dependent on the two tunable parameters 𝑘𝑞 and 𝑘𝑟, hereafter
referred to as the vector parameter k ≜ [𝑘𝑟, 𝑘𝑞]𝑇 ∈ ℝ2. Note
that under the given assumptions, the open-loop transfer func-
tion is in the form

𝐿(𝑠,k) = 𝐶(𝑠,k)𝑃 (𝑠) ≜ 𝐿𝑟(𝑠,k)𝑒−ℎ𝑠, (3)
where 𝐿𝑟(𝑠,k) =

𝐿𝑟𝑛(𝑠,k)
𝐿𝑟𝑑 (𝑠,k)

is the strictly proper rational transfer
function, and consequently, the closed-loop system can be
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classified as retarded system. The choice of the controller
transfer functions 𝑄(𝑠), 𝑅(𝑠), and 𝐹 (𝑠) is part of the design
problem. Let us note that we can obtain practically all types of
common controllers used in industry with a suitable selection
of transfer functions 𝑄(𝑠), 𝑅(𝑠), and 𝐹 (𝑠) (for more details,
see [8]). E.g. selection

𝑄(𝑠) = 𝑠
𝜏𝑠 + 1

, 𝑅(𝑠) = 1
𝑠
, 𝐹 (𝑠) = 𝑘𝑝, (4)

corresponds to a PID controller with a fixed proportional gain
𝑘𝑝 in the form

𝐶𝑃𝐼𝐷(𝑠) = 𝑘𝑝 + 𝑘𝑟
1
𝑠
+ 𝑘𝑞

𝑠
𝜏𝑠 + 1

. (5)

The closed-loop robustness and control performance require-
ments can advantageously be formulated as constraints on the
𝐻∞ norm of one or more weighted sensitivity functions. For
this purpose, let us consider the following sensitivity functions:

𝑇 (𝑠,k) = 𝐶(𝑠,k)𝑃 (𝑠)
1 + 𝐶(𝑠,k)𝑃 (𝑠)

, (6)

𝑆(𝑠,k) = 1 − 𝑇 (𝑠,k), (7)

𝑆𝑝(𝑠,k) = 𝑃 (𝑠)𝑆(𝑠,k), (8)

𝑆𝑐(𝑠,k) = 𝐶(𝑠,k)𝑆(𝑠,k). (9)
2.2 Iterative improvement of control performance by

increasing controller complexity
Consider the case where it is requested to enhance the existing
controller 𝐶0(𝑠). In such a case, 𝐹 (𝑠) = 𝐶0(𝑠) can be set.
The improved controller is considered in the form (2), where
𝑄(𝑠) and 𝑅(𝑠) can be chosen appropriately to improve the
closed-loop performance. For example, in the first step, we
will design a PD controller, and in the second step, we will
supplement it with a PI controller connected in parallel. This
way, we can design a PID controller as an alternative to the
above mentioned method.
2.3 𝐻∞ design specification
As shown in [11], various performance and robustness specifi-
cations could be made using the 𝐻∞ norm of weighted ver-
sions of the transfer functions (6–9). Consider the weighted
sensitivity function

𝐻(𝑠,k) = 𝑊 (𝑠)𝑆⋆(𝑠,k), (10)
where 𝑆⋆(𝑠,k) is an arbitrary closed-loop sensitivity function
(6–9), and 𝑊 (𝑠) is a stable weighting function. Closed-loop

design requirements can now be expressed in a unified form
as a restriction on the 𝐻∞ norm of the transfer function

|𝐻(𝑗𝜔,k)| ≤ 𝛾, ∀𝜔 ∈ [0,∞], (11)
or equivalently

‖𝐻(𝑠,k)‖∞ ≤ 𝛾, (12)
where ‖𝐻‖∞ ≜ sup𝜔 |𝐻(𝑗𝜔)| is called 𝐻∞ norm.

3. Basic Design Problem for Dead-Time
Systems

The fundamental objective in the design of the 𝐻∞ affine
controller (2) is to identify all stabilising controllers that ensure
the internal stability of the closed-loop system and meet the
performance/robustness criterion (12). If the dead time value
ℎ is zero or the infinite-dimensional delay element 𝑒−ℎ𝑠 is
approximated by a finite-dimensional LTI system, standard
stability analysis techniques can be applied. In the case of an
actual dead time, it is necessary to properly select the effective
method for automatic stability evaluation of systems with dead
time. For the purposes of this article, two different methods,
described in section (3.5), are discussed.

Consider that 𝐻(𝑠,k), from (10) is in the form

𝐻(𝑠,k) =
𝐻𝑛(𝑠,k)
𝐻𝑑(𝑠,k)

, (13)

where 𝐻𝑛(𝑠,k) and 𝐻𝑑(𝑠,k) are quasi-polynomials with real
coefficients. Similarly, we can rewrite the controller (2) to

𝐶(𝑠,k) = 𝑘𝑞
𝑄𝑛(𝑠)
𝑄𝑑(𝑠)

+ 𝑘𝑟
𝑅𝑛(𝑠)
𝑅𝑑(𝑠)

+
𝐹𝑛(𝑠)
𝐹𝑑(𝑠)

. (14)

Let  be the set of all controller parameters k = [𝑘𝑟, 𝑘𝑞]satisfying the performance/robustness criterion (12).

 =
{

k ∈ ℝ2 ∶𝐻(𝑠,k) is asymptotically stable ∧

|

|

|

𝐻𝑛(𝑗𝜔,k)
|

|

|

≤ 𝛾 ⋅ ||
|

𝐻𝑑(𝑗𝜔,k)
|

|

|

, 𝜔 ∈ [0,∞)
}

.
(15)

We will hereafter call this set the 𝐻∞ region and the controller
𝐶(𝑠,k) for k ∈  the 𝐻∞ controller. We first find a set of
certain curves that contain the boundary 𝛿 of the 𝐻∞ region
 as its subset. For this purpose, the Theorem from [12] will
be used. Under the above assumptions, it has the following
form.
Theorem 1. The boundary of the set  is contained in the
solution of the systems

⎧

⎪

⎨

⎪

⎩

𝐻𝑛(𝑗𝜔,𝐤) = 0,

𝐻𝑑(𝑗𝜔,𝐤) = 0,

(16a)
(16b)
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⎧

⎪

⎨

⎪

⎩

|𝐻(𝑗𝜔,𝐤)|2 = 𝛾2,

𝜕|𝐻(𝑗𝜔,𝐤)|2

𝜕𝜔
= 0,

(17a)

(17b)

for 𝜔 ∈ ⟨0,+∞) and three equations

|𝐻(0,𝐤)| = 𝛾, (18)

|𝐻(𝑗∞,𝐤)| = 𝛾, (19)
An analysis of the Theorem 1 systems allows the derivation

of an analytical method for determining the boundary of 𝐻∞region. The following statements are given only for the case
of the weighted sensitivity function 𝑆(𝑠) (7). However, they
can be extended for other closed-loop functions, using the
resultant theorem ([7]). Their proofs follow the analogous
rationale as for systems without dead time and are explained
in detail in [8]. Therefore, they are omitted.

Let us consider the the strictly proper rational transfer
function 𝑃𝑟(𝑠) and the weighting function 𝑊 (𝑠) in the rational
coprime form 𝑃𝑟(𝑠) =

𝑃𝑟𝑛(𝑠)
𝑃𝑟𝑑 (𝑠)

and 𝑊 (𝑠) = 𝑊𝑛(𝑠)
𝑊𝑑 (𝑠)

, respectively.
The controller structure is intended in the affine form (14). For
the case of 𝐻(𝑠,k) = 𝑊 (𝑠)𝑆(𝑠,k) then it holds that

𝐻(𝑠,k) =
𝑊𝑛(𝑠)𝑄𝑑(𝑠)𝑅𝑑(𝑠)𝐹𝑑(𝑠)𝑃𝑟𝑑(𝑠)

𝐻𝑑(𝑠,k)
, (20)

where
𝐻𝑑(𝑠,k) =𝑊𝑑(𝑠)

(

𝐹𝑑(𝑠)𝑃𝑟𝑛(𝑠)𝑒−ℎ𝑠𝑄𝑑(𝑠)𝑅𝑛(𝑠)𝑘𝑟+

𝐹𝑑(𝑠)𝑃𝑟𝑛(𝑠)𝑒−ℎ𝑠𝑄𝑛(𝑠)𝑅𝑑(𝑠)𝑘𝑞+
𝑄𝑑(𝑠)𝑅𝑑(𝑠)𝐹𝑑(𝑠)𝑃𝑟𝑑(𝑠)+

𝐹𝑛(𝑠)𝑃𝑟𝑛(𝑠)𝑒−ℎ𝑠𝑄𝑑(𝑠)𝑅𝑑(𝑠)
)

.

(21)

3.1 Analysis of the system (16)
Lemma 1. 𝐻𝑛(𝑗�̃�, k) = 0, �̃� ∈ ℝ, if and only if one of the
following two conditions holds:

(i) At least one of the transfer functions 𝑄(𝑠), 𝑅(𝑠), 𝐹 (𝑠),
and 𝑃 (𝑠) has a pole 𝑗�̃�, �̃� ∈ ℝ on the imaginary axis
of the complex plane.

(ii) The weighting function 𝑊 (𝑠) has zero 𝑗�̃�, �̃� ∈ ℝ on
the imaginary axis of the complex plane.

Lemma 2. Let �̃� ∈ ℝ satisfy Lemma 1 and assume that
𝑊𝑑(𝑗�̃�) ≠ 0 then the system (16) has a solution iff there exists
k̃ = [�̃�𝑟, �̃�𝑞] such that 𝐻𝑑(𝑗�̃�, k̃) = 0 or equivalently iff at
least one of the following conditions is true

(i) �̃�𝑞 ⋅ 𝐹𝑑(𝑗�̃�)𝑃𝑟𝑛(𝑗�̃�)𝑒−ℎ𝑗�̃�𝑄𝑛(𝑗�̃�)𝑅𝑑(𝑗�̃�) = 0,

(ii) �̃�𝑟 ⋅ 𝐹𝑑(𝑗�̃�)𝑃𝑟𝑛(𝑗�̃�)𝑒−ℎ𝑗�̃�𝑄𝑑(𝑗�̃�)𝑅𝑛(𝑗�̃�) = 0,

(iii) 𝐹𝑛(𝑗�̃�)𝑃𝑟𝑛(𝑗�̃�)𝑒−ℎ𝑗�̃�𝑄𝑑(𝑗�̃�)𝑅𝑑(𝑗�̃�) = 0,

(iv) �̃�𝑞 ⋅ 𝐹𝑑(𝑗�̃�)𝑃𝑟𝑛(𝑗�̃�)𝑒−ℎ𝑗�̃�𝑄𝑛(𝑗�̃�)𝑅𝑑(𝑗�̃�) +

+ �̃�𝑟 ⋅ 𝐹𝑑(𝑗�̃�)𝑃𝑟𝑛(𝑗�̃�)𝑒−ℎ𝑗�̃�𝑄𝑑(𝑗�̃�)𝑅𝑛(𝑗�̃�) +

+ 𝐹𝑛(𝑗�̃�)𝑃𝑟𝑛(𝑗�̃�)𝑒−ℎ𝑗�̃�𝑄𝑑(𝑗�̃�)𝑅𝑑(𝑗�̃�) = 0,

(v) 𝐻𝑑(𝑗�̃�, k̃)∕𝑊𝑑(𝑗�̃�) = 0.

3.2 Analysis of the system (17)
Lemma 3. Assume that (16b) does not hold, then the equation
(17a) can be expressed equivalently in the form

𝑝1(𝜔, k) = 0, (22)
where 𝑝1(𝜔, k) is a second-order polynomial with real coeffi-
cients in the variables 𝑘𝑟 and 𝑘𝑞 .

Lemma 4. Assume that (16b) does not hold, then the equation
(17b) can be expressed equivalently in the form

𝑝2(𝜔, k) = 0, (23)
where 𝑝2(𝜔, k) is a second-order polynomial with real coeffi-
cients in the variables 𝑘𝑟 a 𝑘𝑞 .

The solution of the system (17) can be determined ana-
lytically by converting (22) and (23) to an algebraic equation
of the fourth degree with one unknown (for more details, see
[8]).

3.3 Analysis of the equations (18) and (19)
Equations (18) and (19) are equivalent to the equations

𝑝1(0,k) = 0 and lim
𝜔→∞

𝑝1(𝜔,k) = 0,

where 𝑝1(𝜔,k) is the second-order polynomial from Lemma 3.

3.4 Sketch of 𝐻∞ region isolation algorithm
Step 1: Based on the Theorem 1, we can identify all points in
the parametric plane of the controller𝐶(𝑠,𝐤) that are suspected
to form the boundary 𝛿. These points lie on a finite number
of curves outlined by equations (16-19) in Theorem 1. The
ensemble of these curves is denoted as .
Step 2: From the curves of the set , established in step 1,
we isolate those segments that fulfil both the 𝐻∞ specification
(12) and the criterion for internal stability. Such selected
segments are represented by ∗.
Step 3: The curve segments of the set ∗, from step 2, form
the boundary of one or multiple regions within the controller’s
parametric plane. These regions can be bounded or unbounded.
The union of these regions determines the searched set ,
including all 𝐻∞ controllers satisfying the elementary 𝐻∞specification (12).



Analytical Design of Controllers with Two Tunable Parameters Based on 𝐻∞ Specifications for Dead-Time Systems —
5/8

3.5 Stability Analysis of Dead-Time Systems
The points of segments from (3.4-Step 2), representing the
set of unique parameters of the proposed controller, must be
subjected to an internal stability analysis during the design pro-
cedure. Here, we offer a concise overview of two approaches
for evaluating the stability of systems with dead time. The
primary method employed in our approach offers practical, in-
tuitive, and numerically efficient solutions for stability analysis
of retarded system.
Delay sweeping ([21])

Consider the characteristic quasi-polynomial ℎ(𝑠,k) of
the closed-loop system from Fig. 1, expressed as

ℎ(𝑠,k) = 𝐿𝑟𝑑(𝑠,k) + 𝐿𝑟𝑛(𝑠,k)𝑒−ℎ𝑠, (24)
where 𝐿𝑟𝑑(𝑠) and 𝐿𝑟𝑛(𝑠) denote the denominator and numera-
tor, respectively, of the strictly proper rational part 𝐿𝑟(𝑠,k) of
the open-loop transfer function𝐿(𝑠,k). This quasi-polynomial
has an infinite number of roots for ℎ > 0. To ensure closed-
loop stability, additional necessary conditions must be met:
𝐿𝑟𝑛(𝑠,k) and 𝐿𝑟𝑑(𝑠,k) have no common roots in closed right
half-plain, and 𝐿𝑟𝑛(0,k) + 𝐿𝑟𝑑(0,k) ≠ 0 ([21]). The utilised
stability analysis technique is based on the direct Walton-
Marshall method ([20]), which uses the fundamental property
of (24) where its roots continuously change with ℎ for ℎ ≥ 0
([9]). As ℎ varies in ℝ+, root migrations occur just between
the left-half plane and the right-half plane through the imag-
inary axis. The analysis begins by employing conventional
methods to determine the unstable roots of (24) at ℎ = 0.
Subsequently, as ℎ increases, the imaginary axis crossings are
counted, with each transition from left to right incrementing
the count of unstable poles, and vice versa ([21]).

The second method stands out as an alternative way that
represents a sophisticated toolkit with a broader range of ca-
pabilities compared to the previous method.
TDS-CONTROL package ([6])

It is a comprehensive MATLAB package for the analysis
and controller design of LTI time-delay systems characterised
in state-space form ([5]). It can handle both retarded and neu-
tral time-delay systems, as well as specific systems described
in delay descriptor form. The package enables various analysis
methods, including the computation of spectral abscissa, 𝐻∞norm, pseudospectral abscissa, and distance to instability. For
our purposes, the calculation of spectral abscissa is essential.
To compute the roots of characteristic functions in the right
half-plane, the package implements a specialised algorithm
([23]) combining a spectral discretisation of the infinitesimal
generator of the solution operator associated with the closed-
loop system with Newton correction based on the nonlinear
characteristic function ([6]).

4. Application Examples
In this section, the software tool PID 𝐻∞ Designer is briefly
introduced, and two illustrative examples declaring the versa-
tility of the analytical design method are provided here.

4.1 Overview of PID 𝐻∞ Designer
PID 𝐻∞ Designer is a sophisticated MATLAB-based soft-
ware developed to analyse, design, and tune two-parameter-
constrained affine controllers. Still, it is adapted for both the
general and particular controller forms (like PI, PID, Proportional-
Resonant, etc.). Likewise, this versatile tool offers solutions
for both simple and complex design problems like cascade
and repetitive control. The design flexibility is enhanced by
extending the proposed controller with fixed series or par-
allel compensators. Moreover, it supports model sets de-
rived from commonly used identification experiments, in-
cluding the non-standard moment model set provided by the
PIDMA-autotuner from REX Controls. The tool offers two dis-
tinct design environments: “Step By Step” and “Workspace”,
which offer a dynamic and interactive environment suitable
for novice and expert users. The “Step By Step” environment
guides beginners through the step-by-step design procedure,
while the “Workspace” environment offers plenty of advanced
tools for more experienced users. The software demo ver-
sion and further resources with examples are accessible at
www.pidlab.com.
4.2 Example 1
Consider unstable FOPDT plants of the form

𝑃 (𝑠) = 1
𝑠 − 1

𝑒−0.3𝑠. (25)

For this system, we want to find all one degree of freedom
(1DoF) stabilising PI controllers,

𝐶𝑃𝐼 (𝑠) = 𝑘𝑝 +
𝑘𝑖
𝑠
, (26)

meeting the two following design requirements on (7) and (6)
according to (12):

‖𝑆(𝑠)‖∞ ≤ 𝛾, (27)

‖𝑇 (𝑠)‖∞ ≤ 𝛾, (28)
where 𝛾 = 2.5. We want to select the one with the maximum
gain of the integration part from these controllers.

Applying the design algorithm described above, we obtain
two 𝐻∞ regions from constraints (27) and (28). Their inter-
section is the desired 𝐻∞ region (see Fig. 2). The resulting
1DoF controller with the maximum gain of the integration
component has the parameters 𝑘𝑝 = 2.03, 𝑘𝑖 = 0.3575. The
corresponding Nyquist curve of the open-loop transfer func-
tion is depicted in Fig. 3. The sensitivity and complementary
sensitivity functions are shown in Fig. 4, and the closed-loop
responses for the two degrees of freedom (2DoF) controller
([25]), with the weighting factor 𝑏 = 0.35, to the step in the set-
point and the input disturbance are shown in Fig. 5. Note that
for the design parameter 𝛾 < 2.1, the given design problem
has no solution.
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Figure 2. Example 1: 𝐻∞ region ( Reg#1) of (27) and 𝐻∞region ( Reg#2) of (28) with their intersection (◼ Int#1)
and optimal solution (◼ Sol).
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Figure 3. Example 1: The Nyquist curve of the open-loop
transfer function (3) with 𝑀𝑆 and 𝑀𝑇 circles ([25]).

4.3 Example 2
Consider a simple inverted mathematical pendulum on a cart,
where the input is considered the cart’s acceleration and, as
the output, the angle of deflection of the pendulum. It can
be shown that near the unstable equilibrium point, we can
describe this system by a transfer function

𝑃 (𝑠) = −𝑚𝑙
𝑚𝑙2𝑠2 + 𝑏𝑠 − 𝑔𝑚𝑙

. (29)

To design a stabilising PID controller, let us consider a transfer
function in the form (𝑚 = 0.1, 𝑔 = 9.81, 𝑏 = 0.0, 𝑙 = 0.50)

𝑃 (𝑠) = 0.05
−0.025𝑠2 + 0.4905

𝑒−ℎ𝑠, (30)

where ℎ = 0.01 represents the dead time in the feedback
control loop. We want to find all stabilising PID controllers

𝐶𝑃𝐼𝐷(𝑠) = 𝑘𝑝 +
𝑘𝑖
𝑠
+

𝑘𝑑𝑠
𝜏𝑠 + 1

, (31)
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Figure 4. Example 1: The amplitude-frequency response of
sensitivity function 𝑆(𝑠) ( ) and complementary sensitivity
function 𝑇 (𝑠) ( ).
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Figure 5. Example 1: The closed-loop response to step in the
setpoint and the input disturbance.

where 𝑘𝑝 and 𝑘𝑖 are tunable parameters, and 𝑘𝑑 = −10,
𝜏 = 0.005, meeting the design requirements (27) and (28)
for 𝛾 = 1.33. The optimal solution with a maximum gain
of the integration component then occurs for the following
parameters 𝑘𝑝 = −48.57, 𝑘𝑖 = −30.58.

Figure 6. Example 2: 𝐻∞ region ( Reg#1) of (27) and 𝐻∞region ( Reg#2) of (28) with their intersection (◼ Int#1)
and optimal solution (◼ Sol).

5. Conclusion
This paper introduces an upgraded analytical approach for
the design of the 𝐻∞ affine controllers based on 𝐻∞ speci-
fications for dead-time systems. Such a controller structure
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enables the characterisation of a wide class of controllers with
two adjustable and any number of fixed parameters. Unlike
previously published method [8] that depends on Pade approx-
imation for dead-time systems, the presented approach here
shows an enhanced analytical, computational procedure that
eliminates the need for such simplifications. By employing
this upgraded method, we offer a robust technique for design-
ing controllers that can effectively handle the challenges of
dead time in control systems.
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Figure 7. Example 2: The Nyquist curve of the open-loop
transfer function (3) with 𝑀𝑆 and 𝑀𝑇 circles ([25]).
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Figure 8. Example 2: The closed-loop response to step in the
setpoint and the input disturbance.
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